• 5

Решение.

 Обозначим прямую, параллельную АВ, через I. Возьмем на прямой / произвольную точку С, проведем прямую ВС и на ней выбе­рем произвольную точку М (рис. 19). Теперь проведем прямую AM и

обозначим через D точку пересечения этой прямой с прямой I. Наконец, проведем прям ie АС и BD и обозначим через N их точку пересечения. Тогда прямая MN проходит через середину отрезка АВ. Доказательство правильности этого построения легко вытекает из рассмотрения подоб­ных треугольников (через Р и Q обозначены точки пересечения прямой MN с прямыми I и АВ):

AQ QN QB PC NP DP ' AQ_QM QB DP ~~ PM~ PC

Почленно перемножая получающиеся равенства

AQ-DP = PC-QB, AQ-PC =DP-QB

и производя сокращение, получаем AQ2 — QBг, т. е. AQ — QB1)

Авторы: 1379 А Б В Г Д Е З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Книги: 1908 А Б В Г Д Е З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я