3.2. Аксиоматический метод в математике
Если концепция Декарта привела к переходу от математики постоянных величин к математике переменных величин, то открытие Лобачевского привело к переходу от математики постоянных отношений (например, взаимоотношений между точками, прямыми и плоскостями в геометрии Евклида) к математике переменных отношений; например, эти отношения могут быть заменены взаимоотношениями между точками, прямыми и плоскостями другой геометрии — геометрии Лобачевского. За геометрией Лобачевского возникли и другие непротиворечивые геометрии. Затем аналогичное изменение привычных отношений стало производиться и в других математических дисциплинах; например, наряду с обычной алгеброй появилось много новых алгебр. Возник целый ряд совершенно новых математических систем, не имеющих аналогов в классической математике, причем некоторые из этих систем были использованы в качестве математического аппарата различных областей' современной физики.
К этим крупнейшим математическим открытиям ученые пришли, распространяя критику, которой Лобачевский, Бойяи и Гаусс подвергли одну из аксиом Евклида, V постулат, на всю систему аксиом
') Впоследствии, уже в XX веке, вопрос о геометрических свойствах реального мира привел к появлению теории относительности Эйнштейна, коренным образом ломающей привычные геометрические представления, о»
евклидовой геометрии, i затем, переноси метод научного изложения с помощью аксиом на другие математические дисциплины. В результате сложился тот аксиоматический метод в математике, который ныне является подлинной основой как геометрии, так и других разделов современной математики.
Для того чтобы понять сущность аксиоматического метода, обратимся снова к геометрии. До открытия Лобачевского, когда было распространено мнение о том, что геометрия Евклида — единственно мыслимая геометрия, считалось, что эта геометрия описывает реальное, физическое пространство точно. Поэтому можно было пытаться определять основные геометрические понятия, указывая реальные прообразы этих понятий. Именно так и поступал Евклид и, по-видимому, его предшественники, начиная с Пифагора и Демокрита. Правда, мы видели, что представления о точках, линиях, поверхностях и их взаимоотношениях были совершенно различными у разных ученых, и даже в одно и то же определение «точка — то, что не имеет частей», разные ученые вкладывали различный смысл; мы видели также, что система определений и аксиом Евклида, воспроизводившая традиционные образцы, не отражала представлений самого Евклида и не охватывала важнейших понятий, которыми он пользовался.
Но после появления геометрии Лобачевского стало ясно, что путь, которым шел Евклид в своих определениях основных понятий, и принципиально невозможен. Если мыслимых геометрий много, то в каждой геометрии должны быть свои основные понятия и поэтому нельзя дать единые общие определения основных понятий. Иначе говоря, определения основных понятий должны зависеть от аксиом геометрической системы. Определения основных понятий той или иной геометрической системы должны относиться только к данной геометрической системе и не должны претендовать на определение основных понятий физического пространства, которое только с различной степенью точности отражается различными схемами геометрических пространств.
Так как единое определение основных понятий для всевозможных геометрий дать невозможно, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Только такое определение основных поня тий геометрии соответствует абстрактному характеру этих понятий. В этом случае говорят, что геометрическая система определяется сис темой аксиом.
Таким образом, при аксиоматическом построении некоторой геометрической системы (или вообще при аксиоматическом построении некоторой математической теории) мы исходим из некоторой системы аксиом, или, как говорят, аксиоматики. В этих аксиомах описываются свойства основных понятий рассматриваемой геометрической системы, и мы можем представлять себе основные понятия в виде объектов iiooin природы, обладающих указанными в аксиомах свойствами.
модели
21
Относительно самих згих основных понятий (вроде геометрических понятий «точка», '.прямая линия» и др.) можно сказать, что они косвенно определяю гея аксиомами. Это — пример дескриптивного определения математического объекта, т. е. определения объекта описанием его свойств. Никакие другие определения этих основных понятий геометрической системы невозможны. Из аксиом мы выводим первые теоремы, из аксиом и уже доказанных теорем выводим все новые теоремы, которые и составляют здание рассматриваемой геометрической системы. Следовательно, аксиомы — .это первоначальные предложения об основных понятиях геометрии, которые принимаются в данной геометрической системе без доказательства и на основе которых доказываются все теоремы рассматриваемой геометрической системы Такую же роль шрают аксиомы и в любой другой математической теории.
Евклид и его предшественники примерно гак и понимали роль аксиом. Поскольку доказательство всякой теоремы геометрии представляет собой вывод ее из некоторых тругих (как правило, более простых) предложений, в результате многовекового развития геометрии выкристаллизовались первоначальные предложения, на основании которых доказывались остальные георемы. Эти первоначальные предложения («основные понятия» н '(постулаты» у Евклида) и были приняты за аксиомы. Из сказанного ясно, что аксиомы геометрии имеют о п ы гное происхождение, т. е. отражают некоторые простые свойства реального пространства Из сказанного ясно также, что в процессе исторического развития геометрии за аксиомы были приняты сравнительно простые, наглядно ясные предложения. Однако не следует считать, что аксиома—это простая истина, не требующая доказательства в силу своей очевидности. «Очевидность»—это понятие, чуждое аксиоматическому методу; простота же аксиом—это результат исторического развития науки и вопрос удобства. К тому же некоторые теоремы могут показаться «проще» некоторых аксиом. Например, V постулат Евклида, несомненно «сложнее» для понимания, чем некоторые перные теоремы геометрии.