• загрузка...
    5

МАТРИЧНАЯ ВЯЗЬ «ЗОЛОТЫХ СКРИЖАЛЕЙ»

загрузка...

Существует в Египте и, по всей видимости, перешедшая оттуда в некоторые другие страны Востока, красивая легенда о том, что мудрые жрецы, обладавшие большими знаниями и заботившиеся о сохранении и передаче этих знаний людям будущего, занесли их на золотые скрижали и хорошо спрятали. Когда же эти знания потребуются людям, они будут им открыты. Сегодня можно констатировать, что легенда эта имеет под собой серьезные основания.

Как уже упоминалось, в начале XX в. археологическая экспедиция под руководством Дж. Квибелла вскрыла в Саккаре (Египет) погребальное сооружение, в котором был захоронен вельможа по имени Хеси-Ра. По печатям, которые находились в склепе, было установлено, что сановник с таким необычным именем жил во времена правления фараона Джосера. Именно в то время, когда началось строительство первой пирамиды [8].

В гробнице находилось 11 деревянных панелей, покрытых с фронтальной поверхности великолепной резьбой, а с тыльной — какими-то (не опубликованными впоследствии) чертежами. Время не пощадило панелей. В склеп попала вода и шесть из них полностью погибли. А из сохранившихся пяти три пострадали очень сильно.

Содержание рельефов, изображенных на панелях, имеет достаточно бытовой характер, как бы повторяющийся и на многих других носителях древности. Отличие в четкости композиции и просматривающемся от панели к панели единстве художественного замысла (рис. 10-13).

Каждая панель включает изображение стоящего сановника, кроме первой, на которой он же представлен сидящим перед столиком с жертвенными хлебцами (?). А это могло свидетельствовать о его жреческом сословии. Небольшие усики, которые полагалось носить архитекторам, показывают, что он является зодчим, а присутствующие на всех панелях письменные принадлежности характеризуют его как писца-вельможу по прутьямжезлам, которые он держит в руках. Жезлы эти также сопровождают его на всех панелях. Но если малый везде, кроме первой панели, имеет как бы одинаковую длину, то большой, более похожий на прут, чем на жезл, изображен на всех панелях различной длины. Причины этого различия скрыты.

По-видимому, первым обратившим внимание на то, что длины жезлов панели 13 подчинены пропорции 1: 5, что равнозначно соотношению между малой стороной и диагональю прямоугольника ДК со сторонами 1x2, был И. Шевелев. (Как уже отмечалось выше, такой прямоугольник назван И. Шмелевым двусмежным квадратом.) Эти отношения заложены, например, в комплексе гробницы Джосера, в погребальной камере Хеопса и даже в плане города Мемфиса (6,0x12 км), т.е. довольно часто встречаются в различных сооружениях Древнего Египта. Именно диагональ этого прямоугольника можно двумя операциями циркуля разделить на три иррациональные части, кратные золотому числу: 0,618; 0,382; 0,118. Интересно, что это деление И. Шмелев обнаружил на панелях, современная математика его не знала.

Отталкиваясь от этих отношений, И. Шмелев на основе евклидовой геометрии провел анализ структурных элементов всех оставшихся панелей и доказал, приняв за модуль ширину панели, что расстояния между этими элементами описываются величинами, кратными золотым пропорциям [8]. (Замечу, что до этой работы знание золотых пропорций архитекторами пирамид египтология не регистрировала.) Я не буду рассматривать найденные соотношения и повторять проведенные им расчеты. Они частично использовались в работе [9] и тоже частично относятся к размерам измерительных инструментов. Несколько отвлекусь от описания саженей и покажу, что некоторые числовые коэффициенты пропорций между фигурами деревянных панелей имеют величину, равную числам матрицы 3. Выпишу их со схем панелей 10-13, из работы И. Шмелева [8], и сопоставлю с числами в окрестностях главной диагонали матрицы 5 (числа выделены на ней жирным шрифтом):

2,618

1,309

0,944

0,618

0,250

0,146

0,073

2,118

1,236

0,809

0,500

0,236

0,118

0,059

1,618

1,059

0,764

0,404

0,191

0,096

0,056

1,528

1,00

0,654

0,382

0,154

0,090

0,034

Таким образом, коэффициенты числовых пропорций, получаемые по фигурам деревянных панелей, являются элементами матрицы 5, и по ним можно найти любое число бесконечной матрицы. А это однозначно свидетельствует о том, что Хеси-Ра знал числовые поля матриц 5 и, возможно, 6. Отметив это, вернемся к панелям и попытаемся по коэффициентам жезла и «прутьев» найти их истинные длины. Вероятно, истинные размеры панелей в первоисточниках не приводились, И. Шмелев их не знал и потому не проверил правильность своего пропорционирования. Проведем качественные вычисления, используя принятую И. Шмелевым методику измерения. Поскольку панели египтологи посчитали за так называемые ложные двери1, то их ширина не может быть меньше 1 м и больше 1,30 -1,40 м, т.е. в пределах меньшой сажени. А если это так, то сановник на панели 2 изображен по величине равным своему росту. Известно, что египтяне в древности имели рост где-то 1,75 — 1,85 м. А так как высота панели в два с небольшим раза больше роста сановника, то ее длина находится в пределах 3,5—3,7 м, а ширина в пределах 1,20 м. Этой величине примерно соответствуют половины сажений греческой (230,4 м), великой — 244,0 м и большей — 258,4 м.

1По предположению о «ложных дверях» И.Шмелев посчитал, что все панели имеют одинаковую ширину, а первая только выше других. Но это предположение исходит из евклидовой геометрии. А поскольку египтяне пользовались неевклидовой геометрией, то не только высота, но и ширина первой панели больше других. Это видно из того,- что фигура жреца и его жезл на первой панели меньше, чем на второй. И остальные панели попарно неодинаковы. Но, как будет показано ниже, это не принципиально.

Рис. 10. Панель 1 [8]

Рис. 11. Панель 2[8]

Рис. 12. Панель 3 [8]

Рис. 13. Панель 4 [8]

Предположим, что панель имеет ширину в полсажени великой, т.е. 122 м, и посмотрим, какую длину имеют жезл и посох на панели 11, используя найденные И. Шмелевым коэффициенты.

Так как длина жезла на панели 2 (рис. И) равна почти половине ширины панели или четверти сажени великой — 61 см, что составляет великий локоть, то наконечник жезла равен:

61 х ,1180х 2 = 14,4 см,

а это 1/16 часть греческой сажени:

14,4x16 = 230,4 см.

И, следовательно, наконечник жезла есть пясть сажени греческой. И. Шмелев не придал значения тому, что наконечник жезла имеет выступ в верхней части, который увеличивает его длину в отношении верхней части к нижней примерно на 7/6 Если 6 частей равно 0,118, то 7 частей равны примерно 0,1377, или учетверенной величине последнего члена нисходящего египетского ряда 0,034 х 4 = 0,1378. Умножая 0,1378 на длину жезла, получаем:

61x0,1378=16,81 см.

Верхняя часть наконечника составляет пядь (поллоктя) меньшой сажени. Находим ее:

16,81x8 = 134,5см.

Определим, чему равен черенок жезла:

61 х 0,382 х 2 = 46,6 см, а это локоть церковной сажени:

46,6x4=186,4 см.

Наконец, определим длину посоха:

61 х 2,618 = 159,7 см.

Сановник держит в правой руке посох, длина которого равна кладочной сажени.

Итак, на панели 2 (рис. 11) зашифрованы длины четырех древнерусских саженей: меньшой, кладочной, церковной и греческой.

Обратимся к панели 3 (рис. 12). На ней левая рука сановника сжимает трость с размерами А х ( 5 - 1). Найдем ее длину:

61 х( 5 - 1) = 61 х 1,236 = 75,4 см.

И имеем полсажени простой:

75,4x2 = 150,8см.

На панели 4 (рис. 13) у него в руках длинная трость с параметрами:

А х 5 = В.

Определим ее длину:

61 х 2,236 = 136,4 см = В.

Ни одна древнерусская сажень или ее части по длине этому размеру не соответствует. Проверим результат другим способом. Длина диагонали прямоугольника над головой сановника равна В, а В = 5/4 х F. В свою очередь F = 0,882М. По нему и находим F :

F = 0,882 х 122 = 107,6см.

А теперь определяем В:

B = 5/4x107,6 = 134,5см.

И снова получаем самую маленькую древнерусскую сажень — меньшую.

Отмечу, что в этом случае В А х 5 . Некорректность вызвана слабой проработанностью арифметических операций, связанных с золотыми пропорциями (мы, вероятно, плохо понимаем принципы сложения чисел золотых пропорций и получаемые результаты). Но не исключено также, что Хеси-Ра сознательно и логично допустил ряд операций, искажающих результаты расчетов и переход от первой панели к последующим или эти операции мы тоже еще не понимаем, поскольку еще непонятна диспропорция изменения высоты сановника и мерных инструментов при переходе от первой панели к последующим. Какова цель этих искажений и что за ними скрывается, необходимо тщательно исследовать.

Таким образом, изображенные на трех панелях (рис. 11-13) жезлы сановника и трости различной длины имеют размеры, совпадающие с размерами шести древнерусских саженей. Можно полагать, что остальные пять саженей из 11 присутствовали на истлевших панелях. Однако даже найденные панели позволяют утверждать, что при строительстве пирамид использовался комплекс инструментов, соразмерный древнерусским саженям. При этом надо иметь в виду, что, хотя мы и замеряем сажени и их элементы в сантиметрах, они в метричности несоразмерны друг другу и потому складываются по правилам матричной вязи, имея результатом сложения элементы другой сажени.

Это можно показать на примере заполнения матрицы 11, имеющей в своем составе лишь величины полученных саженей. Числа, взятые с панелей, выделены жирным шрифтом, сажени и элементы, найденные по ним, — светлым (матрица 11). Матрице 11 предшествует нисходящий египетский ряд чисел от 1 до 0,0081 (по порядку от первого до одиннадцатого числа матрицы 10), тех самых чисел, которые и определят величину отдельных элементов саженей на главной диагонали.

Главная диагональ матрицы 10 от базисной единицы 1 задает пропорции всем саженям и обусловливает их всеобщее единство, начиная именно с большей сажени 258,4 см и до полвершка меньшой 2,101 см; размер же элементов всех остальных саженей определяется умножением степени обратного золотого числа 0,618 на величину этой сажени. Степень изменяется от 1 до 10 и образует у сажени меньшой, как и у сажени казенной, столбец из семи элементов: полвершка, вершок, полпяди, пядь, поллоктя, локоть, полсажени, сажень. Количество элементов на главной диагонали у остальных саженей по мере приближения к базисной 1 уменьшается, и у двух саженей, кладочной и большей, оказывается равным их длине. Поэтому, по-видимому, не имеет существенного значения, какова по существу ширина деревянных панелей. Ее можно приравнять любой сажени, кроме меньшой, а диагональ пропорционирования в итоге все равно выведет на весь комплекс саженей.

По имеющимся шести саженям остальные легко восстанавливаются, например посредством арифметических операций матричной вязи. Проведем это восстановление. Складываем половину церковного локтя 23,3 см с половиной простой сажени и получаем полсажени царской:

23,3 + 75,4 = 98,7 см.

Царская же сажень равна:

98,7 х 2 = 197,4 см.

Складывая локоть великий с царской саженью, имеем сажень большую:

61,0 + 197,4 = 258,4 см.

Оставшиеся три сажени находятся вычитанием. Вычитаем из сажени церковной сажень простую и получаем локоть малой сажени:

186,4 - 150,8 = 35,6 см.

Умножая его на 4, находим малую сажень:

35,6 x 4 = 142,4 см.

Теперь из греческой сажени вычтем сажень церковную и получаем народный локоть:

230,4 - 186,4 = 44,0 см.

С учетом народного локтя находим народную сажень:

44,0 х 4 = 176,0 см.

И, наконец, вычитаем из греческой сажени народную, получая казенный локоть:

230,4 - 176,0 = 54,4 см.

Откуда казенная сажень равна:

54,4 x 4 = 217,6 см.

Матрица 10

 

1

 

0,944

0,764

0,618

 

 

0,892

0,721

0,584

 

0,382

 

 

0,842

0,681

0,551

 

0,236

 

0,520

 

0,146

 

 

0,090

 

 

0,056

 

 

0,034

 

 

0,021

 

 

0,013

 

0,008  

 

Матрица 11

 

258,4

 

244,0

197,4

159,7

 

 

230,4

186,4

150,8

122,0

98,7

 

 

217,6

176,0

142,4

115,2

93,20

75,40

61,00

 

134,5

108,8

 

57,60

46,60

37,70

 

67,20

54,40

44,00

35,60

28,80

23,30

 

33,61

27,20

 

14,40

 

16,81

13,60

 

8,90

 

8,404

6,80

5,50

 

4,202

3,34

 

2,101

 

Итак, на золотых скрижалях, которые, по-видимому, названы И. Шмелевым «золотыми» за большой объем занесенной на них эзотерической информации, жезл и «прутья» в руках Хеси-Ра являются элементами измерительных инструментов, соразмерных с элементами саженей Древней Руси. И можно полагать, что их было не 12, а 14 или 22 (7 х 2 = 14; 11x2 = 22). Тогда размер остальных саженей еще необходимо определить.

Степенное изменение числовых величин от большей сажени по главной диагонали к меньшой обусловливает уникальное арифметическое пропорционирование, по которому каждый член пропорции, являясь элементом большей сажени по диагонали, становится и элементом другой сажени, другой пропорции по вертикали. То есть выполняет две как бы смежные функции и может перейти на другую форму пропорционирования, стать элементом третьей сажени (и не только третьей) посредством матричной вязи. Результатом сложения, например, двух иррациональных чисел становится третье, им пропорциональное, иррациональное число. К такому же результату приводят операции умножения и деления элементов саженей как друг на друга, так и на члены главной диагонали матрицы 11. Всеобщая комбинаторика матричной вязи древних саженей обладает качественно иными свойствами, чем метричностъ, резко уменьшая объемы измерений и вычислений в проектировании и в строительстве, заключая в себе золотые пропорции, а вместе с ними и соответствие соизмерителъных инструментов природным структурам.

Авторы: 1379 А Б В Г Д Е З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Книги: 1908 А Б В Г Д Е З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я